[ CourseWikia.com ] Hands-on Data Science and AI for Healthcare
File List
- ~Get Your Files Here !/02 - 1. Disease Prediction Using Machine Learning/02 - Diabetes prediction using machine learning model.mp4 20.3 MB
- ~Get Your Files Here !/04 - 3. Radiology Image Detection Using Computer Vision/02 - X-ray manufacturer classification using convolutional neural networks (CNN).mp4 17.4 MB
- ~Get Your Files Here !/03 - 2. Sentiment Analysis of Patient Opinion/02 - Sentiment analysis using pre-trained transformer models.mp4 12.9 MB
- ~Get Your Files Here !/05 - 4. Exploratory Data Analysis Using Visualization/02 - Diseases and medications text visualization using word clouds.mp4 7.4 MB
- ~Get Your Files Here !/02 - 1. Disease Prediction Using Machine Learning/01 - Use Case Diabetes prediction.mp4 7.2 MB
- ~Get Your Files Here !/05 - 4. Exploratory Data Analysis Using Visualization/03 - Diseases and medications text visualization using Scattertext.mp4 5.7 MB
- ~Get Your Files Here !/03 - 2. Sentiment Analysis of Patient Opinion/01 - Use case Online medication review.mp4 5.6 MB
- ~Get Your Files Here !/05 - 4. Exploratory Data Analysis Using Visualization/01 - Use case Diseases and medications text.mp4 5.6 MB
- ~Get Your Files Here !/04 - 3. Radiology Image Detection Using Computer Vision/01 - Use case Shoulder implant X-ray manufacturer detection.mp4 5.5 MB
- ~Get Your Files Here !/04 - 3. Radiology Image Detection Using Computer Vision/03 - X-ray manufacturer classification using transfer learning.mp4 5.1 MB
- ~Get Your Files Here !/01 - Introduction/01 - Using data science and AI for healthcare.mp4 3.1 MB
- ~Get Your Files Here !/02 - 1. Disease Prediction Using Machine Learning/03 - Model explanation using SHAP.mp4 2.9 MB
- ~Get Your Files Here !/01 - Introduction/03 - How the exercise files work.mp4 2.2 MB
- ~Get Your Files Here !/06 - Conclusion/01 - Next steps.mp4 1.7 MB
- ~Get Your Files Here !/01 - Introduction/02 - What you should know.mp4 1.3 MB
- ~Get Your Files Here !/02 - 1. Disease Prediction Using Machine Learning/02 - Diabetes prediction using machine learning model.srt 10.1 KB
- ~Get Your Files Here !/04 - 3. Radiology Image Detection Using Computer Vision/02 - X-ray manufacturer classification using convolutional neural networks (CNN).srt 7.3 KB
- ~Get Your Files Here !/03 - 2. Sentiment Analysis of Patient Opinion/02 - Sentiment analysis using pre-trained transformer models.srt 4.5 KB
- ~Get Your Files Here !/02 - 1. Disease Prediction Using Machine Learning/01 - Use Case Diabetes prediction.srt 3.9 KB
- ~Get Your Files Here !/03 - 2. Sentiment Analysis of Patient Opinion/01 - Use case Online medication review.srt 3.6 KB
- ~Get Your Files Here !/05 - 4. Exploratory Data Analysis Using Visualization/02 - Diseases and medications text visualization using word clouds.srt 2.9 KB
- ~Get Your Files Here !/05 - 4. Exploratory Data Analysis Using Visualization/01 - Use case Diseases and medications text.srt 2.7 KB
- ~Get Your Files Here !/05 - 4. Exploratory Data Analysis Using Visualization/03 - Diseases and medications text visualization using Scattertext.srt 2.5 KB
- ~Get Your Files Here !/04 - 3. Radiology Image Detection Using Computer Vision/03 - X-ray manufacturer classification using transfer learning.srt 2.4 KB
- ~Get Your Files Here !/04 - 3. Radiology Image Detection Using Computer Vision/01 - Use case Shoulder implant X-ray manufacturer detection.srt 1.9 KB
- ~Get Your Files Here !/02 - 1. Disease Prediction Using Machine Learning/03 - Model explanation using SHAP.srt 1.8 KB
- ~Get Your Files Here !/01 - Introduction/03 - How the exercise files work.srt 1.5 KB
- ~Get Your Files Here !/01 - Introduction/02 - What you should know.srt 1.3 KB
- ~Get Your Files Here !/01 - Introduction/01 - Using data science and AI for healthcare.srt 1.1 KB
- ~Get Your Files Here !/06 - Conclusion/01 - Next steps.srt 986 bytes
- ~Get Your Files Here !/Bonus Resources.txt 386 bytes
- Get Bonus Downloads Here.url 181 bytes
Download Torrent
Related Resources
Copyright Infringement
If the content above is not authorized, please contact us via anywarmservice[AT]gmail.com. Remember to include the full url in your complaint.